

Kuan-Yu Chen (陳冠宇)

2020/09/28 @ TR-313, NTUST

Review

- Space and Time complexity
 - Big-Oh
 - Omega
 - Theta
 - Little-Oh
 - Little-Omega
- The master method theorem: $T(n) = aT\left(\frac{n}{b}\right) + f(n)$
 - 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
 - 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
 - 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(\frac{n}{b}) \le cf(n)$ for some constant c < 1 and all sufficiently large *n*, then $T(n) = \Theta(f(n))$

Array

- An array is a set of pairs < *index*, *value* >, such that each index is associated with a value
 - In C++, the index is starting at 0

d

 l_s

1	2	3	4	5	6	7	8
<0,1>	<1,5>	<2,4>	<3,7>	<4,9>	<5,0>	<6,2>	<7,1>

- The array *A* maps into continuous memory locations

• $A_1 = A[0] = 1$								Size in Bytes	
•	$A_{4} = A_{1}$	5] = 0		char	1				
- 1	16 — 11 1			int	2				
•]	Location	1 of A_1 1		float	4				
•]	Location	n of A_6 i		double	8				
	\square								

Example

• Given an array

int marks[] = {99, 67, 78, 56, 88, 90, 34, 85} please calculate the address of marks[4] if the base address = 1000

– An integer value requires 2

$$-l_s + 4d = 1000 + 4 \times 2 = 1008$$

99	67	78	56	88	90	34	85
marks[0]	marks[1]	marks[2]	marks[3]	marks[4]	marks[5]	marks[6]	marks[7]
1000	1002	1004	1006	1008	1010	1012	1014

Declare an Array

• The elements of an array can be initialized at the time of declaration

2D Array.

- 2D array is also named matrix
- A matrix is a mathematical object that arises in may physical problems
 - A general matrix consists of m rows and n columns of numbers
 - If m is equal to n, we call the matrix square

	col	1 col 2	2 col 3		col 1	col 2	col 3	col 4	col	5 col 6
row 1	-27	3	4	row 1	15	0	0	22	0	-15
row 2	6	82	-2	row 2	0	11	3	0	0	0
row 3	109	-64	11	row 3	0	0	0	-6	0	0
row 4	12	8	9	row 4	0	0	0	0	0	0
row 5	48	27	47	row 5	91	0	0	0	0	0
	L]	row 6	0	0	28	0	0	0
	(a)						(b)	Spar	se N	/latrix

2D Array..

- For a matrix *A*, we can work with any element by writing $A_{i,j} = A[i-1][j-1]$, and the element can be found very quickly
 - It should be noted that the index is starting at 0 in C++
 - $A_{1,1} = A[0][0] = -27$
 - $A_{3,2} = A[2][1] = -64$
- There are two ways to store a matrix in the memory
 - Row-major
 - Column-major

	col 1	col 2	col 3
row 1	-27	3	4
row 2	6	82	-2
row 3	109	-64	11
row 4	12	8	9
row 5	48	27	47

2D Array – Row-Major

Given a matrix A, row-major will rearrange all of the elements, A_{1,1}, A_{1,2}, A_{1,3}, A_{2,1}, ..., A_{5,3}, and then store in the memory

- Location for $A_{i,j} = l_s + [(i 1) \times 3 + (j 1)] \times d$
- Generally, given an $m \times n$ matrix A, location for $A_{i,j}$ is $l_s + [(i-1) \times n + (j-1)] \times d$

2D Array – Column-Major

Given a matrix A, row-major will rearrange all of the elements, A_{1,1}, A_{2,1}, A_{3,1}, A_{4,1}, ..., A_{5,3}, and then store in the memory

– More generally, given an $m \times n$ matrix A, location for $A_{i,j}$ is $l_s + [(j-1) \times m + (i-1)] \times d$

Examples – 1

- Given a 2D array *A*, the location for $A_{3,2}$ is 1110, and the location for $A_{2,3}$ is 1115. If the size for each element is 1, please indicate the location for $A_{5,4}$.
 - Since the location for $A_{3,2}$ is 1110 and the location for $A_{2,3}$ is 1115, so the storage method is column-major!

– Assume the size of row is *m*

$$Location(A_{i,j}) = l_s + ((j-1) \times m + (i-1)) \times d$$

 $Location(A_{2,3}) = l_s + ((3 - 1) \times m + (2 - 1)) \times 1 = 1115$ $Location(A_{3,2}) = l_s + ((2 - 1) \times m + (3 - 1)) \times 1 = 1110$ $l_s + 2 \times m + 1 = 1115$

 $l_s + m + 2 = 1110$

 $l_s = 1102$ m = 6

 $Location(A_{5,4}) = 1102 + ((4 - 1) \times 6 + (5 - 1)) \times 1 = 1124$

Examples – 2

- Given a matrix A, if $Location(A_{2,3}) = 18$, $Location(A_{3,2}) = 28$, and $Location(A_{1,1}) = 2$, please calculate $Location(A_{4,5}) = ?$
 - It is row-major
 - $l_s = Location(A_{1,1}) = 2$

 $Location(A_{i,j}) = l_s + [(i-1) \times n + (j-1)] \times d$

- $Location(A_{2,3}) = 18 = 2 + [(2-1) \times n + (3-1)] \times d = 2 + n \times d + 2 \times d$
- $Location(A_{3,2}) = 28 = 2 + [(3-1) \times n + (2-1)] \times d = 2 + 2 \times n \times d + d$
- $10 = n \times d d$
- $d=2 \qquad n=6$
- *Location* $(A_{4,5}) = 2 + [(4-1) \times 6 + (5-1)] \times 2 = 46$

Lower-Triangular Matrix.

- Given a square matrix A with m rows
 - The maximum number of nonzero terms in row *i* is *i*
 - $A_{i,j} = 0, if \ i < j$
 - Such a matrix is lower-triangular matrix
 - The total number of non-zero terms is $1 + 2 + \dots + m = \frac{m(m+1)}{2}$
 - For large *m*, it would be worthwhile to save the memory space by only storing non-zero part $\overline{x}_{x x}$

х

X X

х

X X Х

non-

zero

х

Х

* * * * * * * * * * * * * * * *

lower triangular

zero

x x

х

• Row-major

$$\forall i \ge j, \ Location(A_{i,j}) = l_s + \left[\left(\frac{(1+(i-1))}{2} \times (i-1) \right) + (j-1) \right] \times d$$
$$= l_s + \left[\frac{i \times (i-1)}{2} + j - 1 \right] \times d$$
$$\bullet \ \text{Column-major}$$

$$\forall i \ge j, \ Location(A_{i,j}) = l_s + \left[\frac{(1+m)}{2} \times m - \frac{(1+(m-j+1))}{2} \times (m-j+1) + (i-j)\right] \times d$$
$$= l_s + \left[i + m \times (j-1) - \frac{j \times (j-1)}{2} - 1\right] \times d$$
12

Lower-Triangular Matrix..

• The inference for column-major

$$\forall i \ge j, \ Location(A_{i,j}) = l_s + \left[\frac{(1+m)}{2} \times m - \frac{(1+(m-j+1))}{2} \times (m-j+1) + (i-j)\right] \times d \\ = l_s + \left[i + m \times (j-1) - \frac{j \times (j-1)}{2} - 1\right] \times d$$

Lower-Triangular Matrix...

• The inference for column-major

$$\forall i \ge j, \ Location(A_{i,j}) = l_s + \left[\frac{(1+m)}{2} \times m - \frac{(1+(m-j+1))}{2} \times (m-j+1) + (i-j)\right] \times d \\ = l_s + \left[i + m \times (j-1) - \frac{j \times (j-1)}{2} - 1\right] \times d$$

Upper-Triangular Matrix

- Given a square matrix A with n columns
 - The maximum number of nonzero terms in column j is j
 - $-A_{i,j} = 0, if i > j$
 - Such a matrix is upper-triangular matrix
 - The total number of non-zero terms is $1 + 2 + \dots + n = \frac{n(n+1)}{2}$
 - For large *n*, it would be worthwhile to save the memory space by only storing non-zero part $\boxed{\mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x}}$
 - Row-major

$$\forall i \leq j, \ Location(A_{i,j}) = l_s + \left[j + n \times (i-1) - \frac{i \times (i-1)}{2} - 1\right] \times d$$

Column-major

$$\forall i \leq j, Location(A_{i,j}) = l_s + \left[\frac{j \times (j-1)}{2} + i - 1\right] \times d$$

Х Х Х Х X non-Х X Х zero Х Х zero Х Х Х Х XX Х upper triangular

Example

- - 1. How many memory elements do we need?

$$1 + 2 + 3 + \dots + 100 = \frac{1 + 100}{2} \times 100 = 5050$$

2. Which memory block will store $A_{70,50}$? (the starting number in the memory is 1) $Location(A_{i,j}) = l_s + \left[\frac{i \times (i-1)}{2} + j - 1\right] \times d$

$$1 + \left[(1 + 2 + 3 + \dots + 69) + 49 \right] \times 1 = 1 + \left[\frac{1 + 69}{2} \times 69 + 49 \right] \times 1 = 2465$$

3. Which element in *A* will be stored in B_{152} ?

 $1 + [(1 + 2 + 3 + \dots + (i - 1)) + (j - 1)] \times 1 = 1 + \left[\frac{1 + (i - 1)}{2} \times (i - 1) + (j - 1)\right] \times 1 = 152$ $\therefore i \ge j$ $\therefore i = 17 \quad j = 16$ 16

Questions?

kychen@mail.ntust.edu.tw